Dopamine Replacement Therapy, Learning and Reward Prediction in Parkinson’s Disease: Implications for Rehabilitation
نویسندگان
چکیده
The principal feature of Parkinson's disease (PD) is the impaired ability to acquire and express habitual-automatic actions due to the loss of dopamine in the dorsolateral striatum, the region of the basal ganglia associated with the control of habitual behavior. Dopamine replacement therapy (DRT) compensates for the lack of dopamine, representing the standard treatment for different motor symptoms of PD (such as rigidity, bradykinesia and resting tremor). On the other hand, rehabilitation treatments, exploiting the use of cognitive strategies, feedbacks and external cues, permit to "learn to bypass" the defective basal ganglia (using the dorsolateral area of the prefrontal cortex) allowing the patients to perform correct movements under executive-volitional control. Therefore, DRT and rehabilitation seem to be two complementary and synergistic approaches. Learning and reward are central in rehabilitation: both of these mechanisms are the basis for the success of any rehabilitative treatment. Anyway, it is known that "learning resources" and reward could be negatively influenced from dopaminergic drugs. Furthermore, DRT causes different well-known complications: among these, dyskinesias, motor fluctuations, and dopamine dysregulation syndrome (DDS) are intimately linked with the alteration in the learning and reward mechanisms and could impact seriously on the rehabilitative outcomes. These considerations highlight the need for careful titration of DRT to produce the desired improvement in motor symptoms while minimizing the associated detrimental effects. This is important in order to maximize the motor re-learning based on repetition, reward and practice during rehabilitation. In this scenario, we review the knowledge concerning the interactions between DRT, learning and reward, examine the most impactful DRT side effects and provide suggestions for optimizing rehabilitation in PD.
منابع مشابه
Dopamine-Synthesizing Neurons: An Overview of Their Development and Application for Cell Therapy
Cell-gene therapy is a dynamic constituent of novel medical biotechnology. Neurodegenerative disordersin which damage to or demise of specific brain cell types plays central role, are clear examples of diseasecandidate for cell replacement therapy. Dopaminergic (DAergic) neurons biosynthesize dopamine, a vitalneurotransmitter in the central nervous system. Due to the involveme...
متن کاملP139: Role of Dopamine Receptor D3 in Depression and Anxiety
Dopamine (DA) is one of the main catecholamines in the brain and is crucial for movement coordination, endocrine function, reward, mood, memory and emotions. The dopaminergic system is the primary therapeutic target in the treatment of Parkinson’s disease (PD), drug addiction and schizophrenia. Notwithstanding, dysfunction of central dopaminergic neurotransmission has also been associated to de...
متن کاملA Tribute to Charlie Chaplin: Induced Positive Affect Improves Reward-Based Decision-Learning in Parkinson’s Disease
Reward-based decision-learning refers to the process of learning to select those actions that lead to rewards while avoiding actions that lead to punishments. This process, known to rely on dopaminergic activity in striatal brain regions, is compromised in Parkinson's disease (PD). We hypothesized that such decision-learning deficits are alleviated by induced positive affect, which is thought t...
متن کاملDynamic and Diverse Roles of Dopamine
Neural circuits are dynamically regulated by a diverse class of secretedmolecules known as neuromodulators, amongwhich is dopamine, amolecule linked to disorders such as Parkinson’s disease and schizophrenia and to reward-driven learning. This Select highlights several recently published papers that elucidate how dopamine neurons regulate circuits involved in depression-related behaviors, learn...
متن کاملMaladaptive Reward-Learning and Impulse Control Disorders in Patients with Parkinson’s Disease: A Clinical Overview and Pathophysiology Update
Impulse control disorders (ICD) in Parkinson's disease (PD) are a disabling non-motor symptom with frequencies of 13-35% among patients receiving dopamine replacement therapy. ICD in PD is strongly associated with dopaminergic drug use, especially non-ergot dopamine agonists (DA). However, individual susceptibility and disease-related neural changes are also important contributors to the develo...
متن کامل